Probability and Statistics I

STAT 3600 - Fall 2021

Le Chen
lzc0090@auburn.edu

Last updated on
July 4, 2021

Auburn University
 Auburn AL

Chapter 2. Discrete Distributions

§ 2.1 Random Variables of the Discrete Type

§ 2.2 Mathematical Expectation
§ 2.3 Special Mathematical Expectation

§ 2.4 The Binomial Distribution

§ 2.5 The Hypergeometric Distribution
§ 2.6 The Negative Binomial Distribution
§ 2.7 The Poisson Distribution

Chapter 2. Discrete Distributions

§ 2.1 Random Variables of the Discrete Type
§ 2.2 Mathematical Expectation
§ 2.3 Special Mathematical Expectation
§ 2.4 The Binomial Distribution
§ 2.5 The Hypergeometric Distribution
§ 2.6 The Negative Binomial Distribution
§ 2.7 The Poisson Distribution

Definition 2.4-1 A r.v. X is called a Bernoulli r.v. with parameter p if its p.m.f. is given by

$$
f(x)=\mathbb{P}(X=x)=p^{x}(1-p)^{1-x}, \quad x=0 \text { or } 1
$$

where $0 \leq p \leq 1$.

A Bernoulli r.v. X is associated with some experiment where an outcome can be classified as either a "success" or a "failure," and the probability of a success is p and the probability of a failure is $q=1-p$. Such experiments are often called Bernoulli trials.

Theorem 2.4-1 The mean and variance of the Bernoulli r.v. X are

$$
\begin{gathered}
\mu=\mathbb{E}(X)=p, \\
\sigma^{2}=\operatorname{Var}(X)=p(1-p) .
\end{gathered}
$$

Definition 2.4-2 A r.v. X is called a binomial r.v. with parameters (n, p) if its pmf is given by

$$
f(x)=\mathbb{P}(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad x=0,1,2, \cdots, n
$$

where $0 \leq p \leq 1$ and

$$
\binom{n}{x}=\frac{n!}{x!(n-x)!}
$$

which is known as the binomial coefficient.

Remark 2.4-1 Recall that if n is positive integer, then

$$
(a+b)^{n}=\sum_{x=0}^{n}\binom{n}{x} b^{x} a^{n-x}
$$

Thus, if we use binomial expansion, then sum of the binomial probabilities is

$$
\sum_{x=0}^{n}\binom{n}{x} p^{x}(1-p)^{n-x}=[p+(1-p)]^{n}=1
$$

a result that had to follow from the fact that $f(x)$ is pmf.

Remark 2.4-2 A binomial r.v. X is associated with some experiments in which n independent Bernoulli trials are performed and X represents the number of successes that occur in the n trials. Note that a Bernoulli r.v. is just a binomial r.v. with parameters $(1, p)$.

We now use the binomial expansion to find the mgf for a binomial random variable and then the mean and variance.

Theorem 2.4-2 Let $X \sim \operatorname{binom}(n, p)$. Then

$$
M_{x}(t)=\left[(1-p)+p e^{t}\right]^{n}, \quad-\infty<t<\infty
$$

Solution. The mgf is given by

$$
\begin{aligned}
M_{x}(t) & =E\left(e^{t x}\right)=\sum_{x=0}^{n} e^{t x}\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =\sum_{x=0}^{n}\binom{n}{x}\left(p e^{t}\right)^{x}(1-p)^{n-x} \\
& =\left[(1-p)+p e^{t}\right]^{n}, \quad-\infty<t<\infty
\end{aligned}
$$

from the expansion of $(a+b)^{n}$ with $a=1-p$ and $b=p e^{t}$.

Theorem 2.4-3 Let $X \sim \operatorname{binom}(n, p)$. Then

$$
\mu=n p \quad \text { and } \quad \sigma^{2}=n p(1-p)
$$

Solution. By Theorem 2,

$$
\begin{gathered}
\mu=\mathbb{E}(X)=M^{\prime}(0)=\left.n\left[(1-p)+p e^{t}\right]^{n-1}\left(p e^{t}\right)\right|_{t=0}=n p, \\
\sigma^{2}=\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-(E[X])^{2}=M^{\prime \prime}(0)-\left[M^{\prime}(0)\right]^{2}=n p(1-p)
\end{gathered}
$$

Example 2.4-1 A binary source generates digits 1 and 0 randomly with probabilities 0.6 and 0.4 , respectively.
(a) What is the probability that two 1 s and three 0 s will occur in a five-digit sequence?

Example 2.4-1 A binary source generates digits 1 and 0 randomly with probabilities 0.6 and 0.4 , respectively.
(b) What is the probability that at least three 1 s will occur in a five-digit sequence?

Example 2.4-2 A fair coin is flipped 10 times. Find the probability of the occurrence of 5 or 6 heads.

Example 2.4-3 For $0 \leq p \leq 1$, and $n=2,3, \cdots$, determine the value of

$$
\sum_{x=2}^{n} x(x-1)\binom{n}{x} p^{x}(1-p)^{n-x}
$$

Exercises from textbook: Section 2.4: 1, 3, 4, 5, 7abc, 10, 17, 20.

